Displaying images 61 - 90 of 92 in total
This artist's conception shows a nearly invisible ring around Saturn -- the largest of the giant planet's many rings. It was discovered by NASA's Spitzer Space Telescope. The ring is so diffuse that it reflects little sunlight, or visible light that we see with our eyes. But its dusty particles shine with infrared light, or heat radiation, that Spitzer can see. The artist's conception simulates an infrared view of the giant ring. Saturn appears as just a small dot from outside the band of ice and dust. The bulk of the ring material starts about six million kilometers (3.7 million miles) away from the planet and extends outward roughly another 12 million kilometers (7.4 million miles). The ring's diameter is equivalent to roughly 300 Saturns lined up side to side. The inset shows an enlarged image of Saturn, as seen by the W.M. Keck Observatory at Mauna Kea, Hawaii, in infrared light. The ring, stars and wispy clouds are an artist's representation.
This diagram illustrates the extent of the largest ring around Saturn, discovered by NASA's Spitzer Space Telescope. The ring is huge, and far from the gas planet and the rest of its majestic rings. The bulk of the ring material starts about six million kilometers (3.7 million miles) away from the planet and extends outward roughly another 12 million kilometers (7.4 million miles). The diameter of the ring is equivalent to 300 Saturns lined up side to side. The ring is thick too -- it's about 20 times as thick as the diameter of the planet. In fact, the entire volume of the ring is big enough to hold one billion Earths! Saturn's newest halo is tilted at about 27 degrees from the main ring plane and encompasses the orbit of the moon Phoebe. Both the ring and Phoebe orbit in the opposite direction of Saturn's other rings and most of its moons, including Titan and Iapetus. Why did it take so long to find something so big? The answer is that the ring is very tenuous, made up of a sparse collection of ice and dust particles. If you could transport yourself to the ring, you wouldn't even know you were there because the particles are so far apart. There's not a lot of sunlight out at Saturn, so this small density of particles doesn't reflect much visible light. Spitzer was able to spot the band because it sees infrared light, or heat radiation, from objects. Even though the ring material is very cold, it still gives off heat that Spitzer can see. The discovery offers a possible solution to the mystery of the moon Iapetus. Years after Giovanni Cassini discovered Iapetus in 1671, he correctly deduced that one side of the moon is white and the other dark in a pattern that some say resembles the yin-yang symbol or a tennis ball. Astronomers think it is possible that the newfound ring, which orbits in the opposite direction of Iapetus, is the cause of the two-faced coloring. As the ring circles around, particles could be drifting inward and splattering the icy moon on the face like bugs on a windshield. The pictures of Saturn, Phoebe and Iapetus were taken by NASA's Cassini spacecraft. The ring is an artist's illustration. The size of Phoebe relative to Iapetus has been enlarged to better show Phoebe. Phoebe is about 200 kilometers (124 miles) in diameter, while Iapetus is about 1,500 kilometers (932 miles) across.
This artist's concept shows a celestial body about the size of our moon slamming at great speed into a body the size of Mercury. NASA's Spitzer Space Telescope found evidence that a high-speed collision of this sort occurred a few thousand years ago around a young star, called HD 172555, still in the early stages of planet formation. The star is about 100 light-years from Earth. Spitzer detected the signatures of vaporized and melted rock, in addition to rubble, all flung out from the giant impact. Further evidence from the infrared telescope shows that these two bodies must have been traveling at a velocity relative to each other of at least 10 kilometers per second (about 22,400 miles per hour). As the bodies slammed into each other, a huge flash of light would have been emitted. Rocky surfaces were vaporized and melted, and hot matter was sprayed everywhere. Spitzer detected the vaporized rock in the form of silicon monoxide gas, and the melted rock as a glassy substance called obsidian. On Earth, silica can be found around volcanoes in black glassy rocks called obsidian, and around meteor craters in small rocks called tektites. Shock waves from the collision would have traveled through the planet, throwing rocky rubble into space. Spitzer also detected the signatures of this rubble. In the end, the larger planet is left skinned, stripped of its outer layers. The core of the smaller body and most of its surface were absorbed by the larger one. This merging of rocky bodies is how planets like Earth are thought to form. Astronomers say a similar type of event stripped Mercury of its crust early on in the formation of our solar system, flinging the removed material away from Mercury, out into space and into the sun. Our moon was also formed by this type of high-speed impact: a body the size of Mars is thought to have slammed into a young Earth about 30 to 100 million years after the sun formed. The sun is now 4.5 billion years old. According to this theory, the resulting molten rock, vapor and shattered debris mixed with debris from Earth to form a ring around our planet. Over time, this debris coalesced to make the moon.
This artist's conception shows a young, hypothetical planet around a cool star. A soupy mix of potentially life-forming chemicals can be seen pooling around the base of the jagged rocks. Observations from NASA's Spitzer Space Telescope hint that planets around cool stars -- the so-called M-dwarfs and brown dwarfs that are widespread throughout our galaxy -- might possess a different mix of life-forming, or prebiotic, chemicals than our young Earth. Life on our planet is thought to have arisen out of a pond-scum-like mix of chemicals. Some of these chemicals are thought to have come from a planet-forming disk of gas and dust that swirled around our young sun. Meteorites carrying the chemicals might have crash-landed on Earth. Astronomers don't know if these same life-generating processes are taking place around stars that are cooler than our sun, but the Spitzer observations show their disk chemistry is different. Spitzer detected a prebiotic molecule, called hydrogen cyanide, in the disks around yellow stars like our sun, but found none around cooler, less massive, reddish stars. Hydrogen cyanide is a carbon-containing, or organic compound. Five hydrogen cyanide molecules can join up to make adenine -- a chemical element of the DNA molecule found in all living organisms on Earth.
This figure charts 30 hours of observations taken by NASA's Spitzer Space Telescope of a strongly irradiated exoplanet (an planet orbiting a star beyond our own). Spitzer measured changes in the planet's heat, or infrared light. The lower graph shows precise measurements of infrared light with a wavelength of 8 microns coming from the HD 80606 stellar system. The system consists of a sun-like star and a planetary companion on an extremely eccentric, comet-like orbit. The geometry of the planet-star encounter is shown in the upper part of the figure. As the planet swung through its closest approach to the star, the Spitzer observations indicated that it experienced very rapid heating (as shown by the red curve). Just before close approach, the planet was eclipsed by the star as seen from Earth, allowing astronomers to determine the amount of energy coming from the planet in comparison to the amount coming from the star. The observations were made in Nov. of 2007, using Spitzer's infrared array camera. They represent a significant first for astronomers, opening the door to studying changes in atmospheric conditions of planets far beyond our own solar system.
These computer-generated images chart the development of severe weather patterns on the highly eccentric exoplanet HD 80606b during the days after its closest approach to its parent star. An exoplanet is a planet that orbits a star other than our sun. The images were produced by computer simulations that modeled NASA's Spitzer Space Telescope's measurements of heat radiating from the planet. The six frames are evenly spaced in time, starting from 4.4 days after the planet's close approach to the star, a moment known as "periastron," and running through 8.9 days after periastron. The blue glow of the crescent is starlight that has been scattered and reflected by planet. The starlight appears blue because the planet is a very efficient absorber of red light. The night side appears reddish orange as it glows with its own internal heat. These theoretical models allow astronomers to better understand weather patterns on distant planets. While direct telescopic observations of the atmospheres of such worlds may be many decades away, such simulations give us a clue to what we may see when it becomes possible. The Spitzer observations themselves spanned the relatively brief period when the heating of the planet was most intense, running from 20 hours prior to 10 hours after periastron. The observations were made in Nov. of 2007. HD 80606b is located 190 light-years away in the constellation Ursa Major. It can be seen with binoculars.
This artist's conception shows the closest known planetary system to our own, called Epsilon Eridani. Observations from NASA's Spitzer Space Telescope show that the system hosts two asteroid belts, in addition to previously identified candidate planets and an outer comet ring. Epsilon Eridani is located about 10 light-years away in the constellation Eridanus. It is visible in the night skies with the naked eye. The system's inner asteroid belt appears as the yellowish ring around the star, while the outer asteroid belt is in the foreground. The outermost comet ring is too far out to be seen in this view, but comets originating from it are shown in the upper right corner. Astronomers think that each of Epsilon Eridani's asteroid belts could have a planet orbiting just outside it, shepherding its rocky debris into a ring in the same way that Jupiter helps keep our asteroid belt confined. The planet near the inner belt was previously identified in 2000 via the radial velocity, or "star wobble," technique, while the planet near the outer belt was inferred when Spitzer discovered the belt. The inner belt orbits at a distance of about 3 astronomical units from its star -- or about the same position as the asteroid belt in our own solar system (an astronomical unit is the distance between Earth and our sun). The second asteroid belt lies at about 20 astronomical units from the star, or a position comparable to Uranus in our solar system. The outer comet ring orbits from 35 to 90 astronomical units from the star; our solar system's analogous Kuiper Belt extends from about 30 to 50 astronomical units from the sun.
Scientists have reported the first conclusive discovery of water vapor in the atmosphere of an exoplanet, or a planet beyond our Solar System. This artist's impression shows an infrared view of a gas-giant exoplanet transiting across the face of its star. NASA's Spitzer Space Telescope observed this type of system in infrared light, providing the breakthrough. The planet, HD 189733b, lies 63 light-years away in the constellation Vulpecula. It was discovered in 2005 as it transited its parent star, dimming the star's light by some three percent.
This plot of data from NASA's Spitzer Space Telescope tells astronomers that a toasty gas exoplanet, or a planet beyond our solar system, contains water vapor. Spitzer observed the planet, called HD 189733b, cross in front of its star at three different infrared wavelengths: 3.6 microns, 5.8 microns, and 8 microns (see lime-colored dots). For each wavelength, the planet's atmosphere absorbed different amounts of the starlight that passed through it. The pattern by which this absorption varies with wavelength matches known signatures of water, as shown by the theoretical model in blue.
Scientists have reported the first conclusive discovery of water vapor in the atmosphere of an exoplanet, or a planet beyond our Solar System. This artist's impression shows a gas-giant exoplanet transiting across the face of its star. Infrared analysis by NASA's Spitzer Space Telescope of this type of system provided the breakthrough. The planet, HD 189733b, lies 63 light-years away in the constellation Vulpecula. It was discovered in 2005 as it transited its parent star, dimming the star's light by some three percent.
This artist's concept illustrates the hottest planet yet observed in the Universe. The scorching ball of gas, a "hot Jupiter" called HD 149026b, is a sweltering 3,700 degrees Fahrenheit (2,040 degrees Celsius) -- about 3 times hotter than the rocky surface of Venus, the hottest planet in our Solar System. The planet is so hot that astronomers believe it is absorbing almost all of the heat from its star, and reflecting very little to no light. Objects that reflect no sunlight are black. Consequently, HD 149026b might be the blackest known planet in the Universe, in addition to the hottest. The temperature of this dark and balmy planet was taken with NASA's Spitzer Space Telescope. While the planet reflects no visible light, its heat causes it to radiate a little visible and a lot of infrared light. Spitzer, an infrared observatory, was able to measure this infrared light through a technique called secondary eclipse. HD 149026b is what is known as a transiting planet, which means that it crosses in front of and passes behind its starthe secondary eclipsewhen viewed from Earth. By determining the drop in total infrared light that occurs when the planet disappears, astronomers can figure out how much infrared light is coming from the planet alone. The Spitzer observations of HD 149026b also suggest a hot spot in the middle of the side of the planet that always faces its star. Even though the planet is black, the spot would glow like a black lump of charcoal. HD 149026b is thought to be tidally locked, just as our moon is to Earth, such that one side of the planet is perpetually baked under the heat of its sun. Astronomers think that HD 149026b is probably blazing hot on its sunlit side, and much cooler on its dark side. A similar phenomenon was observed previously by Spitzer for the planet Upsilon Andromedae b. In the case of both planets, heat is not being evenly distributed across their surfaces. This is the opposite of what happens on Jupiter, where temperature differences are minimal all around. HD 149026b is located 256 light-years away in the constellation Hercules. It is the smallest known transiting planet, with a size similar to Saturn's and a suspected dense core 70 to 90 times the mass of Earth. It speeds around its star every 2.9 days.
This is the first-ever map of the surface of an exoplanet, or a planet beyond our solar system. The map, which shows temperature variations across the cloudy tops of a gas giant called HD 189733b, is made up of infrared data taken by NASA's Spitzer Space Telescope. Hotter temperatures are represented in brighter colors. HD 189733b is what is known as a hot-Jupiter planet. These sizzling, gas planets practically hug their stars, orbiting at distances that are much closer than Mercury is to our sun. They whip around their stars quickly; for example, HD 189733b completes one orbit in just 2.2 days. Hot Jupiters are also thought to be tidally locked to their stars, just as our moon is to Earth. This means that one side of a hot Jupiter always faces its star. As predicted, the map reveals that HD 189733b has a warm spot on its "sunlit" side, which is always pointed toward the star. But the map also shows that this spot is offset from the high-noon, or sun-facing, point by 30 degrees. According to scientists, ferocious winds traveling up to 6,000 miles per hour (nearly 9,700 kilometers per hour) are probably pushing the hot spot to the east. In addition to the warm spot, the map tells astronomers that temperatures on HD 189733b are fairly even all around. While the dark side is about 1,200 degrees Fahrenheit (650 degrees Celsius), the sunlit side is just a bit hotter at 1,700 degrees Fahrenheit (930 degrees Celsius). This mild temperature variation is more evidence for strong winds, since winds would help spread the heat from the hot, sunlit side over to the dark side. These data were collected by Spitzer's infrared array camera as the planet, a so-called transiting planet, passed in front of its star, then swung around and disappeared behind it (see animation). By observing the planet for half of its 2.2-day long orbit, Spitzer was able to measure the infrared light, or heat, coming from its entire surface.
This is the first-ever map of the surface of an exoplanet, or a planet beyond our solar system. The map, which shows temperature variations across the cloudy tops of a gas giant called HD 189733b, is made from infrared data taken by NASA's Spitzer Space Telescope. Hotter temperatures are represented in brighter colors. HD 189733b is what is known as a hot-Jupiter planet. These sizzling, gas planets practically hug their stars, orbiting at distances that are much closer than Mercury is to our sun. They whip around their stars quickly; for example, HD 189733b completes one orbit in just 2.2 days. Hot Jupiters are also thought to be tidally locked to their stars, just as our moon is to Earth. This means that one side of a hot Jupiter always faces its star. As predicted, the map reveals that HD 189733b has a warm spot on its "sunlit" side, which is always pointed toward the star. But the map also shows that this spot is offset from the high-noon, or sun-facing, point by 30 degrees. According to scientists, ferocious winds traveling up to 6,000 miles per hour (nearly 9,700 kilometers per hour) are probably pushing the hot spot to the east. In addition to the warm spot, the map tells astronomers that temperatures on HD 189733b are fairly even all around. While the dark side is about 1,200 degrees Fahrenheit (650 degrees Celsius), the sunlit side is just a bit hotter at 1,700 degrees Fahrenheit (930 degrees Celsius). This mild temperature variation is more evidence for strong winds, since winds would help spread the heat from the hot, sunlit side over to the dark side. These data were collected by Spitzer's infrared array camera as the planet, a so-called transiting planet, passed in front of its star, then swung around and disappeared behind it (see animation). By observing the planet for half of its 2.2-day long orbit, Spitzer was able to measure the infrared light, or heat, coming from its entire surface.
This diagram illustrates how astronomers using NASA's Spitzer Space Telescope can capture the elusive spectra of hot-Jupiter planets. Spectra are an object's light spread apart into its basic components, or wavelengths. By dissecting light in this way, scientists can sort through it and uncover clues about the composition of the object giving off the light. To obtain a spectrum for an object, one first needs to capture its light. Hot-Jupiter planets are so close to their stars that even the most powerful telescopes can't distinguish their light from the light of their much brighter stars. But, there are a few planetary systems that allow astronomers to measure the light from just the planet by using a clever technique. Such "transiting" systems are oriented in such a way that, from our vantage point, the planets' orbits are seen edge-on and cross directly in front of and behind their stars. In this technique, known as the secondary eclipse method, changes in the total infrared light from a star system are measured as its planet transits behind the star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone. To capture a spectrum of the planet, Spitzer must observe the system twice. It takes a spectrum of the star together with the planet (first panel), then, as the planet disappears from view, a spectrum of just the star (second panel). By subtracting the star's spectrum from the combined spectrum of the star plus the planet, it is able to get the spectrum for just the planet (third panel). This ground-breaking technique was used by Spitzer to obtain the first-ever spectra of two planets beyond our solar system, HD 209458b and HD 189733b. The results suggest that the hot planets are socked in with dry clouds high up in the planet's stratospheres. In addition, HD 209458b showed hints of silicates, indicating those high clouds might be made of very fine sand-like particles.
This infrared data from NASA's Spitzer Space Telescope called a spectrum tells astronomers that a distant gas planet, a so-called "hot Jupiter" called HD 209458b, might be smothered with high clouds. It is one of the first spectra of an alien world. A spectrum is created when an instrument called a spectrograph spreads light from an object apart into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object. Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called "transiting" hot-Jupiter planets using the "secondary eclipse" technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors. When astronomers first saw the infrared spectrum above, they were shocked. It doesn't look anything like what theorists had predicted. Theorists though the spectra for hot, Jupiter-like planets like this one would be filled with the signatures of molecules in the planets' atmospheres. But the spectrum doesn't show any molecules. It is what astronomers call "flat." For example, theorists thought there'd be signatures of water in the wavelength ranges of 8 to 9 microns. The fact that water is not seen there might indicate that the water is hidden under a thick blanket of high, dry clouds. This spectrum was produced by Dr. Mark R. Swain of NASA's Jet Propulsion Laboratory in Pasadena, Calif., using a complex set of mathematical tools. It was derived using two different methods, both of which led to the same result. The data were taken on July 6 and 13, 2005, by Dr. Jeremy Richardson of NASA's Goddard Space Flight Center and his team using Spitzer's infrared spectrograph.
This artist's concept shows a cloudy Jupiter-like planet that orbits very close to its fiery hot star. NASA's Spitzer Space Telescope was recently used to capture spectra, or molecular fingerprints, of two "hot Jupiter" worlds like the one depicted here. This is the first time a spectrum has ever been obtained for an exoplanet, or a planet beyond our solar system. The ground-breaking observations were made with Spitzer's spectrograph, which pries apart infrared light into its basic wavelengths, revealing the "fingerprints" of molecules imprinted inside. Spitzer studied two planets, HD 209458b and HD 189733b, both of which were found, surprisingly, to have no water in the tops of their atmospheres. The results suggest that the hot planets are socked in with dry, high clouds, which are obscuring water that lies underneath. In addition, HD209458b showed hints of silicates, suggesting that the high clouds on that planet contain very fine sand-like particles. Capturing the spectra from the two hot-Jupiter planets was no easy feat. The planets cannot be distinguished from their stars and instead appear to telescopes as single blurs of light. One way to get around this is through what is known as the secondary eclipse technique. In this method, changes in the total light from a so-called transiting planet system are measured as a planet is eclipsed by its star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone. This technique, first used by Spitzer in 2005 to directly detect the light from an exoplanet, currently only works at infrared wavelengths, where the differences in brightness between the planet and star are less, and the planet's light is easier to pick out. For example, if the experiment had been done in visible light, the star is so much brighter than the planet that the total light from the system would appear to be unchanged, even as the planet disappeared from view. To capture spectra of the planets, Spitzer observed their secondary eclipses with its spectrograph. It took a spectrum of a star together with its planet, then, as the planet disappeared from view, a spectrum of just the star. By subtracting the spectrum of the star from the spectrum of the star and planet together, astronomers were able to determine the spectrum of the planet itself.
This infrared data from NASA's Spitzer Space Telescope called a spectrum tells astronomers that a distant gas planet, a so-called "hot Jupiter" called HD 209458b, might be smothered with high clouds. It is one of the first spectra of an alien world. A spectrum is created when an instrument called a spectrograph cracks light from an object open into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object. Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called "transiting" hot-Jupiter planets using the "secondary eclipse" technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors. When astronomers first saw the infrared spectrum above, they were shocked. It doesn't look anything like what theorists had predicted. For example, theorists thought there'd be signatures of water in the wavelength ranges of 8 to 9 microns. The fact that water is not detected might indicate that it is hidden under a thick blanket of high, dry clouds. In addition, the spectrum shows signs of silicate dust tiny grains of sand in the wavelength range of 9 to 10 microns. This suggests that the planet's skies could be filled with high clouds of dust unlike anything seen in our own solar system. There is also an unidentified molecular signature at 7.78 microns. Future observations using Spitzer's spectrograph should be able to determine the nature of the mysterious feature. This spectrum was produced by Dr. Jeremy Richardson of NASA's Goddard Space Flight Center, Greenbelt, Md. and his colleagues. The data were taken by Spitzer's infrared spectrograph on July 6 and 13, 2005.
This infrared data from NASA's Spitzer Space Telescope called a spectrum tells astronomers that a distant gas planet, a so-called "hot Jupiter" called HD 189733b, might be smothered with high clouds. It is one of the first spectra of an alien world. A spectrum is created when an instrument called a spectrograph cracks light from an object open into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object. Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called "transiting" hot-Jupiter planets using the "secondary eclipse" technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors. Astronomers were perplexed when they first saw the infrared spectrum above. It doesn't look anything like what theorists had predicted. Theorists thought the spectra of hot, Jupiter-like planets like this one would be filled with the signatures of molecules in the planets' atmospheres. But the spectrum doesn't show any molecules, and is instead what astronomers call "flat." For example, theorists thought there'd be a strong signature of water in the form of a big drop in the wavelength range between 7 and 10 microns. The fact that water is not detected may indicate that it is hidden underneath a thick blanket of high, dry clouds. The average brightness of the spectrum is also a bit lower than theoretical predictions, suggesting that very high winds are rapidly moving the terrific heat of the noonday sun from the day side of HD 189733b to the night side. This spectrum was produced by Dr. Carl Grillmair of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena, Calif., and his colleagues.
An artist's conception shows a gas-giant planet orbiting very close to its parent star, creating searingly hot conditions on the planet's surface. New research suggests that for three such planets lying from 50 to 150 light-years from Earth, strong winds thousands of miles per hour mix the atmosphere so that the temperature is relatively uniform from the permanently light side to the permanently dark side. This illustration represents an infrared view of a planetary system, in which brightness indicates warmer temperatures. For example, the bright band around the equator of the planet denotes warmer temperatures on both the dark and sunlit sides. The planet's poles, shown in darker colors, would be cooler.
This is an artist's concept of a hypothetical 10-million-year-old star system. The bright blur at the center is a star much like our Sun. The other orb in the image is a gas-giant planet like Jupiter. Wisps of white throughout the image represent traces of gas. Astronomers using NASA's Spitzer Space Telescope have found evidence showing that gas-giant planets either form within the first 10 million years of a sun-like star's life, or not at all. The lifespan for sun-like stars is about 10 billion years. The scientists came to this conclusion after searching for traces of gas around 15 different sun-like stars, most with ages ranging from 3 million to 30 million years. With the help of Spitzer's Infrared Spectrometer instrument, they were able to search for relatively warm gas in the inner regions of these star systems, an area comparable to the zone between Earth and Jupiter in our own solar system. They also used ground-based radio telescopes to search for cooler gas in the outer regions of these systems, an area comparable to the zone around Saturn and beyond.
The top graph consists of infrared data from NASA's Spitzer Space Telescope. It tells astronomers that a distant planet, called Upsilon Andromedae b, always has a giant hot spot on the side that faces the star, while the other side is cold and dark. The artist's concepts above the graph illustrate how the planet might look throughout its orbit if viewed up close with infrared eyes. Spitzer was able to determine the difference in temperature between the two sides of this planet by measuring the planet's infrared light, or heat, at five points during its 4.6-day-long trip around its star. The temperature rose and fell depending on which face, the sunlit or dark, was pointed toward Spitzer's cameras. Those temperature oscillations are traced by the wavy orange curve. They indicate that Upsilon Andromedae b has an extreme range of temperatures across its surface, about 1,400 degrees Celsius (2,550 degrees Fahrenheit). This means that hot gas moving across the bright side of the planet cools off by the time it reaches the dark side. The bottom graph and artist's concepts represent what astronomers might have seen if the planet had bands of different temperatures girdling it, like Jupiter. Some astronomers had speculated that "hot-Jupiter" planets like Upsilon Andromedae b, which circle very closely around their stars, might resemble Jupiter in this way. If Upsilon Andromedae b had been like this, there would have been no difference between the average temperatures of the sunlit and dark sides to detect, and Spitzer's data would have appeared as a flat line.
This artist's concept shows a Jupiter-like planet soaking up the scorching rays of its nearby "sun." NASA's Spitzer Space Telescope used its heat-seeking infrared eyes to figure out that a gas-giant planet like the one depicted here is two-faced, with one side perpetually in the cold dark, and the other forever blistering under the heat of its star. The illustration portrays how the planet would appear to infrared eyes, showing temperature variations across its surface. The planet, called Upsilon Andromedae b, was first discovered in 1996 around the star Upsilon Andromedae, located 40 light-years away in the constellation Andromeda. This star also has two other planets orbiting farther out. Upsilon Andromedae b is what's known as a "hot-Jupiter" planet, because it is made of gas like our Jovian giant, and it is hot, due to its tight, 4.6-day-long jaunt around its star. The toasty planet orbits at one-sixth the distance of Mercury from our own sun. It travels in a plane that is seen neither edge- nor face-on from our solar system, but somewhere in between. Scientists do not know how fast Upsilon Andromedae b is spinning on its axis, but they believe that it is tidally locked to its star, just as our locked moon forever hides its "dark side" from Earth's view. Spitzer observed Upsilon Andromedae b at five points during the planet's trip around its star. The planet's light levels went up or down, as detected by Spitzer, depending on whether the planet's sunlit or dark side was pointed toward Earth. These data indicate that the temperature difference between the two hemispheres of the planet is about 1,400 degrees Celsius (2,550 degrees Fahrenheit). According to astronomers, this means that the side of the planet that faces the star is always as hot as lava, while the other side could potentially be as cold as ice. Specifically, the hot side of the planet ranges from about 1,400 to 1,650 degrees Celsius (2,550 to 3,000 degrees Fahrenheit), and the cold side from about minus 20 to 230 degrees Celsius (minus 4 to 450 degrees Fahrenheit). How can one side always be hot? The atmosphere of the planet must be absorbing and reradiating light fast enough that any heated gas circulating around the planet is cooled off before it reaches the dark side.
This is an artist's concept of the star HD 3651 as it is orbited by a close-in Saturn-mass planetary companion and the distant brown dwarf companion discovered by Spitzer infrared photographs. The Saturn-mass planet was discovered through Doppler observations in 2003. Its orbit is very small, the size of Mercury's, and is highly elliptical. The gravity of the distant brown dwarf companion may be reponsible for the distorted shape of the inner planet's orbit.
This artist's concept illustrates what the night sky might look like from a hypothetical alien planet in a star system with an asteroid belt 25 times as massive as the one in our own solar system (alien system above, ours below).NASA's Spitzer Space Telescope found evidence for such a belt around the nearby star called HD 69830, when its infrared eyes spotted dust, presumably from asteroids banging together. The telescope did not find any evidence for a planet in the system, but astronomers speculate one or more may be present.In our solar system, anybody observing the skies on a moonless night far from city lights can see the sunlight that is scattered by dust in our asteroid belt. Called zodiacal light and sometimes the "false dawn," this light appears as a dim band stretching up from the horizon when the Sun is about to rise or set. The light is faint enough that the disk of our Milky Way galaxy remains the most prominent feature in the sky. (The Milky Way disk is shown perpendicular to the zodiacal light in both pictures.)In contrast, the zodiacal light in the HD 69830 system would be 1,000 times brighter than our own, outshining even the Milky Way.
This artist's concept show a massive asteroid belt in orbit around a star the same age and size as our Sun. Evidence for this possible belt was discovered by NASA's Spitzer Space Telescope when it spotted warm dust around the star, presumably from asteroids smashing together.The view is from outside the belt, where planets like the one shown in the foreground, might possibly reside. A collision between two asteroids is depicted to the right. Collisions like this replenish the dust in the asteroid belt, making it detectable to Spitzer.The alien belt circles a faint, nearby star called HD 69830 located 41 light-years away in the constellation Puppis. Compared to our own solar system's asteroid belt, this one is larger and closer to its star -- it is 25 times as massive, and lies just inside an orbit equivalent to that of Venus. Our asteroid belt circles between the orbits of Mars and Jupiter.Because Jupiter acts as an outer wall to our asteroid belt, shepherding its debris into a series of bands, it is possible that an unseen planet is likewise marshalling this belt's rubble. Previous observations using the radial velocity technique did not locate any large gas giant planets, indicating that any planets present in this system would have to be the size of Saturn or smaller.Asteroids are chunks of rock from "failed" planets, which never managed to coalesce into full-sized planets. Asteroid belts can be thought of as construction sites that accompany the building of rocky planets.
This artist's concept illustrates what the night sky might look like from a hypothetical alien planet in a star system with an asteroid belt 25 times as massive as the one in our own solar system.NASA's Spitzer Space Telescope found evidence for such a belt around the nearby star called HD 69830, when its infrared eyes spotted dust, presumably from asteroids banging together. The telescope did not find any evidence for a planet in the system, but astronomers speculate one or more may be present.In our solar system, anybody observing the skies on a moonless night far from city lights can see the sunlight that is scattered by dust in our asteroid belt. Called zodiacal light and sometimes the "false dawn," this light appears as a dim band stretching up from the horizon when the Sun is about to rise or set. The light is faint enough that the disk of our Milky Way galaxy remains the most prominent feature in the sky. In contrast, the zodiacal light in the HD 69830 system would be 1,000 times brighter than our own, outshining even the Milky Way.
This is an artist's impression of the view from the vicinity of a hypothetical terrestrial planet and moon orbiting the red dwarf star AU Microscopii. The relatively newborn 12 million year-old star is surrounded by a very dusty disk of debris from the collision of comets, asteroids, and planetissimals swirling around the young star. Though no planets have been discovered around the star, the disk is strong circumstantial evidence for planets. Not only is it dusty, but also it is warped, possibly by the pull of one or more planets. In this view the glow of starlight reflecting off the disk creates a broad lane across the sky because the planet is in the disk's plane. Similarly, from Earth we see light reflected from interplanetary dust as the zodiacal light (though it is 1/10,000th as dusty as the AU Microcsopii disk). The star AU Microscopiii is 32 light-years from Earth. From this distance, familiar constellations are still recognizable. In the background, the Beehive cluster in Cancer the Crab is seen. Our Sun appears as a bright star in Cancer.
In this artist's conception, a possible newfound planet spins through a clearing in a nearby star's dusty, planet-forming disc. This clearing was detected around the star CoKu Tau 4 by NASA's Spitzer Space Telescope. Astronomers believe that an orbiting massive body, like a planet, may have swept away the star's disc material, leaving a central hole.The possible planet is theorized to be at least as massive as Jupiter, and may have a similar appearance to what the giant planets in our own solar system looked like billions of years ago. A graceful ring, much like Saturn's, spins high above the planet's cloudy atmosphere. The ring is formed from countless small orbiting particles of dust and ice, leftovers from the initial gravitational collapse that formed the possible giant planet.If we were to visit a planet like this, we would have a very different view of the universe. The sky, instead of being the familiar dark expanse lit by distant stars, would be dominated by the thick disc of dust that fills this young planetary system. The view looking toward CoKu Tau 4 would be relatively clear, as the dust in the interior of the disc has fallen into the accreting star. A bright band would seem to surround the central star, caused by light scattered back by the dust in the disc. Looking away from CoKu Tau 4, the dusty disc would appear dark, blotting out light from all the stars in the sky except those which lie well above the plane of the disc.
The artist's rendition shows the newly discovered planet-like object, dubbed "Sedna," in relation to other bodies in the Solar System, including Earth and its Moon; Pluto; and Quaoar, a planetoid beyond Pluto that was until now the largest known object beyond Pluto. The diameter of Sedna is slightly smaller than Pluto's but likely somewhat larger than Quaoar.
This figure shows an artist's rendition comparing brown dwarfs to stars and planets. All objects are plotted to the same scale. On the far left is the limb of the Sun. To its right is shown a very low mass star (a so-called "late-M dwarf"), a couple of brown dwarfs (a hotter "L dwarf" and a cooler "T dwarf"), and the planet Jupiter. These objects have masses ranging from 1050 times that of Jupiter (for the Sun) through 75, 65, 30, and 1 Jupiter mass for the late-M dwarf, L dwarf, T dwarf, and Jupiter, respectively. The colors of the brown dwarfs are chosen to match an age of 1 billion years. Despite the range in mass, all four of the low-mass objects are approximately the same size, ten times smaller than the diameter of the Sun. The visible-light sequence shows how these objects might appear to the human eye: the M and L dwarfs are red, while the T dwarf is dimly magenta, due to lack of light -- actually absorptions by sodium and potassium atoms -- in the green portion of the spectrum.
Displaying images 61 - 90 of 92 in total