Displaying images 61 - 90 of 311 in total
The spectacular swirling arms and central bar of the Sculptor galaxy are revealed in this new view from NASAs Spitzer Space Telescope. This image is an infrared composite combining data from two of Spitzers detectors taken during its early cold, or cryogenic, mission. Also known as NGC 253, the Sculptor galaxy is part of a cluster of galaxies visible to observers in the Southern hemisphere. It is known as a starburst galaxy for the extraordinarily strong star formation in its nucleus. This activity warms the surrounding dust clouds, causing the brilliant yellow-red glow in the center of this infrared image. Infrared light with wavelengths of 3.6 and 4.5 microns is shown as blue/cyan. Eight-micron light is rendered in green, and 24-micron emission is red.
The spectacular swirling arms and central bar of the Sculptor galaxy are revealed in this new view from NASAs Spitzer Space Telescope. The main image is an infrared composite combining data from two of Spitzers detectors taken during its early cold, or cryogenic, mission. Also known as NGC 253, the Sculptor galaxy is part of a cluster of galaxies visible to observers in the Southern hemisphere. It is known as a starburst galaxy for the extraordinarily strong star formation in its nucleus. This activity warms the surrounding dust clouds, causing the brilliant yellow-red glow in the center of this infrared image. The image is split into two constituent parts on the right. On the top is a blue glow primarily from the light of stars as seen at the shorter wavelengths of infrared light. In this view, the disk, spiral arms and central bar are much easier to identify than in visible light because the obscuring effects of dust are minimized. The lower right image shows the glow of dust at longer infrared wavelengths in green and red. Regions of star formation glow especially bright at the longest wavelengths (red). While Spitzer is now operating without any onboard cryogen, it can still operate its shorter-wavelength detectors to produce images equivalent to the star map on the upper right. Spitzer continues to be a valuable tool for studying the infrared properties of galaxies near and far. Infrared light with wavelengths of 3.6 and 4.5 microns is shown as blue/cyan. Eight-micron light is rendered in green, and 24-micron emission is red.
There are nearly 200 galaxies within the marked circles in this image from NASA's Spitzer Space Telescope. These are part of the Perseus-Pisces supercluster of galaxies located 250 million light-years away. Normally, galaxies beyond our Milky Way are hidden from view when they happen to fall behind the plane of our galaxy. This is due to foreground dust standing in the way. Spitzer's Galactic Legacy Infrared Mid-Plane Survey Extraordinaire 360, or Glimpse 360 project, is pointing Spitzer away from the galactic center, to complete a full 360-degree scan of the Milky Way plane. It has captures many images in the process, such as this one, revealing hidden objects.
There are nearly 200 galaxies in this image from NASA's Spitzer Space Telescope. These are part of the Perseus-Pisces supercluster of galaxies located 250 million light-years away. Normally, galaxies beyond our Milky Way are hidden from view when they happen to fall behind the plane of our galaxy. This is due to foreground dust standing in the way. Spitzer's Galactic Legacy Infrared Mid-Plane Survey Extraordinaire 360, or Glimpse 360 project, is pointing Spitzer away from the galactic center, to complete a full 360-degree scan of the Milky Way plane. It has captures many images in the process, such as this one, revealing hidden objects.
How many rings do you see in this striking new image of the galaxy Messier 94 (NGC 4736) as seen by the infrared eyes of NASAs Spitzer Space Telescope? While at first glance one might see a number of them, astronomers believe there is just one. Historically, Messier 94 was considered to have two strikingly different rings: a brilliant, compact band encircling the galaxys core, and a faint, broad, swath of stars falling outside its main disk. Astronomers have recently discovered that the outer ring, seen here in the deep blue glow of starlight, may actually be more of an optical illusion. Their 2009 study combined infrared Spitzer observations with ultraviolet data from NASAs Galaxy Evolution Explorer, and ground-based surveys in visible (Sloan Digital Sky Survey) and near infrared light (Two Micron All Sky Survey). This more complete picture of Messier 94 indicates that we are really seeing two separate spiral arms that, from our perspective, take on the appearance of a single, unbroken ring. The bright inner ring of Messier 94 is very real, however. This area is sometimes identified as a starburst ring because of the frenetic pace of star formation in this confined area. Starbursts like this can often be triggered by gravitational encounters with other galaxies, but in this case may instead be caused by the galaxys oval shape. Tucked in between the inner starburst ring and the outer ring-like arms we find the galaxys disk, striated with greenish filaments of dust. While, at first glance, these dusty arcs look like a collection of rings, they actually follow tightly wound spiral arcs. Messier 94 is about 17 million light years away, making it a distant neighbor of our own Milky Way galaxy. It was first discovered by Charles Messiers assistant, Pierre Mchain, in 1781 and was added to his supervisors famous catalog two days later. Infrared light with wavelengths of 3.6 and 4.5 microns is shown as blue/cyan, showing primarily the glow from starlight. 8 micron light is rendered in green, and 24 micron emission is red, tracing the cooler and warmer components of dust, respectively. The observations were made in 2004, before Spitzer ran out of cryogen.
The spiral galaxy NGC 3627 is located about 30 million light years from Earth. This composite image includes X-ray data from NASA's Chandra X-ray Observatory (blue), infrared data from the Spitzer Space Telescope (red), and optical data from the Hubble Space Telescope and the Very Large Telescope (yellow). The inset shows the central region, which contains a bright X-ray source that is likely powered by material falling onto a supermassive black hole. A search using archival data from previous Chandra observations of a sample of 62 nearby galaxies has shown that 37 of the galaxies, including NGC 3627, contain X-ray sources in their centers. Most of these sources are likely powered by central supermassive black holes. The survey, which also used data from the Spitzer Infrared Nearby Galaxy Survey, found that seven of the 37 sources are new supermassive black hole candidates. Confirming previous Chandra results, this study finds the fraction of galaxies found to be hosting supermassive black holes is much higher than found with optical searches. This shows the ability of X-ray observations to find black holes in galaxies where relatively low-level black hole activity has either been hidden by obscuring material or washed out by the bright optical light of the galaxy. The combined X-ray and infrared data suggest that the nuclear activity in a galaxy is not necessarily related to the amount of star-formation in the galaxy, contrary to some early claims. In contrast, these new results suggest that the mass of the supermassive black hole and the rate at which the black hole accretes matter are both greater for galaxies with greater total masses. A paper describing these results was published in the April 10, 2011 issue of The Astrophysical Journal. The authors are Catherine Grier and Smita Mathur of The Ohio State University in Columbus, OH; Himel GHosh of CNRS/CEA-Saclay in Guf-sur-Yvette, France and Laura Ferrarese from Herzberg Institute of Astrophysics in Victoria, Canada. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.
New research from scientists using NASA's Spitzer Space Telescope suggests that a mysterious infrared glow across our whole sky is coming from stray stars torn from galaxies. When galaxies grow, they merge and become gravitationally tangled in a violent process that results in streams of stars being ripped away from the galaxies. Such streams, called tidal tails, can be seen in this artist's concept. Scientists say that Spitzer is picking up the collective glow of stars such as these, which linger in the spaces between galaxies. This artwork is adapted, in part, from galaxy images obtained from the NASA/ESA Hubble Space Telescope.
This image shows a portion of our sky, called the Botes field, in infrared light. Using Spitzer, researchers were able to detect this background glow, which spreads across the whole sky, by masking out light from galaxies and other known sources of light. The scientists find that this light is coming from stray stars that were torn away from galaxies. When galaxies tangle and merge -- a natural stage of galaxy growth -- stars often get kicked out in the process. The stars are too faint to be seen individually, but Spitzer may be seeing their collective glow.
Astronomers using NASAs Spitzer Space Telescope have greatly improved the cosmic distance ladder used to measure the expansion rate of the universe, as well as its size and age. The cosmic distance ladder, symbolically shown here in this artist's concept, is a series of stars and other objects within galaxies that have known distances. By combining these distance measurements with the speeds at which objects are moving away from us, scientists can calculate the expansion rate of the universe, also known as Hubble's constant. Spitzer was able to improve upon past measurements of Hubble's constant due to its infrared vision, which sees through dust to provide better views of variable stars called Cepheids. These pulsating stars are vital "rungs" in the distance ladder. Spitzer observed ten Cepheids in our own Milky Way galaxy and 80 in a nearby neighboring galaxy called the Large Magellanic Cloud. Without the cosmic dust blocking their view at the infrared wavelengths seen by Spitzer, the research team was able to obtain more precise measurements of the stars' apparent brightness, and thus their distances. With these data, the researchers could then tighten up the rungs on the cosmic distant ladder, better determining distances to other galaxies, and calculate a new and improved estimate of our universe's expansion rate. The galaxies used in this composite artwork are all infrared images from Spitzer covering wavelengths of 3.6 microns (blue), 4.5 microns (green), and 8.0 microns (red).
Quasars, as pictured here in this artist's concept, are bright, energetic regions around giant, active black holes in galactic centers. Although immensely powerful and visible across billions of light years, quasars are actually quite tiny, at least compared to an entire galaxy. Quasars span a few light years, and their inner areas casting out high-velocity winds compare roughly in size only to that of our solar system. It takes a beam of light about ten hours to cross that distance. The galaxies that play host to quasars, in contrast, typically span tens of thousands of light years. Surprisingly, the activity in the compact quasar cores is thought to dramatically influence the evolution the surrounding galaxies, and have a significant impact on the properties of massive galaxies seen today. A research team using data from NASA's Spitzer and Hubble Space telescopes have for the first time found a large sample of galaxies during a key early period of galactic evolution when quasars and their host galaxies begin to interact, but before the two have settled down after recent galactic smashups.
With the combined power of NASA's Spitzer and Hubble space telescopes, as well as a cosmic magnification effect, astronomers have spotted what could be the most distant galaxy ever seen. Light from the primordial galaxy traveled approximately 13.2 billion light-years before reaching NASA's telescopes, shining forth from the so-called cosmic dark ages when the universe was just 3.6 percent of its present age. Astronomers relied on gravitational lensing to catch sight of the early, distant galaxy. In this phenomenon, predicted by Albert Einstein a century ago, the gravity of foreground objects warps and magnifies the light from background objects. At the center we see light from the newfound galaxy MACS 1149-JD. these visible and infrared light images from Hubble, MACS 1149-JD looks like a dim, red speck. The small galaxy's starlight has been stretched into longer wavelengths, or "redshifted," by the expansion of the universe. MACS 1149-JD's stars originally emitted the infrared light seen here at much shorter, higher-energy wavelengths, such as ultraviolet. The far-off galaxy existed within an important era when the universe transformed from a starless expanse during the dark ages to a recognizable cosmos full of galaxies. The discovery of the faint, small galaxy opens a window onto the deepest, remotest epochs of cosmic history.
With the combined power of NASA's Spitzer and Hubble space telescopes, as well as a cosmic magnification effect, astronomers have spotted what could be the most distant galaxy ever seen. Light from the primordial galaxy traveled approximately 13.2 billion light-years before reaching NASA's telescopes, shining forth from the so-called cosmic dark ages when the universe was just 3.6 percent of its present age. Astronomers relied on gravitational lensing to catch sight of the early, distant galaxy. In this phenomenon, predicted by Albert Einstein a century ago, the gravity of foreground objects warps and magnifies the light from background objects. In this image, the many galaxies of a massive cluster called MACS J1149+2223 dominate the scene. Gravitational lensing by the giant cluster brightened the light from the newfound galaxy, known as MACS 1149-JD, some 15 times (though it is not readily apparent in this view).
With the combined power of NASA's Spitzer and Hubble space telescopes, as well as a cosmic magnification effect, astronomers have spotted what could be the most distant galaxy ever seen. Light from the primordial galaxy traveled approximately 13.2 billion light-years before reaching NASA's telescopes, shining forth from the so-called cosmic dark ages when the universe was just 3.6 percent of its present age. Astronomers relied on gravitational lensing to catch sight of the early, distant galaxy. In this phenomenon, predicted by Albert Einstein a century ago, the gravity of foreground objects warps and magnifies the light from background objects. At the center we see light from the newfound galaxy MACS 1149-JD. these visible and infrared light images from Hubble, MACS 1149-JD looks like a dim, red speck. The small galaxy's starlight has been stretched into longer wavelengths, or "redshifted," by the expansion of the universe. MACS 1149-JD's stars originally emitted the infrared light seen here at much shorter, higher-energy wavelengths, such as ultraviolet. The far-off galaxy existed within an important era when the universe transformed from a starless expanse during the dark ages to a recognizable cosmos full of galaxies. The discovery of the faint, small galaxy opens a window onto the deepest, remotest epochs of cosmic history.
With the combined power of NASA's Spitzer and Hubble space telescopes, as well as a cosmic magnification effect, astronomers have spotted what could be the most distant galaxy ever seen. Light from the primordial galaxy traveled approximately 13.2 billion light-years before reaching NASA's telescopes, shining forth from the so-called cosmic dark ages when the universe was just 3.6 percent of its present age. Astronomers relied on gravitational lensing to catch sight of the early, distant galaxy. In this phenomenon, predicted by Albert Einstein a century ago, the gravity of foreground objects warps and magnifies the light from background objects. In the big image at left, the many galaxies of a massive cluster called MACS J1149+2223 dominate the scene. Gravitational lensing by the giant cluster brightened the light from the newfound galaxy, known as MACS 1149-JD, some 15 times, bringing the remote object into view. At upper right, a partial zoom-in shows MACS 1149-JD in more detail, and a deeper zoom appears to the lower right. In these visible and infrared light images from Hubble, MACS 1149-JD looks like a dim, red speck. The small galaxy's starlight has been stretched into longer wavelengths, or "redshifted," by the expansion of the universe. MACS 1149-JD's stars originally emitted the infrared light seen here at much shorter, higher-energy wavelengths, such as ultraviolet. The far-off galaxy existed within an important era when the universe transformed from a starless expanse during the dark ages to a recognizable cosmos full of galaxies. The discovery of the faint, small galaxy opens a window onto the deepest, remotest epochs of cosmic history.
The galaxy Messier 100, or M100, shows its swirling spiral in this infrared image from NASAs Spitzer Space Telescope. The arcing spiral arms of dust and gas that harbor starforming regions glow vividly when seen in the infrared. M100 is a classic example of a grand design spiral galaxy, with prominent and well-defined spiral arms winding from the hot center, out to the cooler edges of the galaxy. It is located about 55 million light years away from Earth, in the little-known constellation of Coma Berenices, near to the more recognizable Leo. In the center, we can see a prominent ring of hot, bright dust surrounding the inner galactic core. Moving further out, the spiral arms peter out towards the edges of the galaxy, where thick webs of dust dominate. Beyond the edges of the dust clouds, a faint blue glow of stars extends to the edge of the galaxys disk. Two small companion galaxies, known as NGC 4323 and NGC 4328, appear as fuzzy blue blobs on the upper side of M100. These so-called lenticular galaxies are virtually clear of any dust, so they lack any of the red/green glow seen in their bigger neighbor. The shape of M100 is probably being perturbed by the gravity of these galaxies. M100 was discovered in 1781, and is now known to stretch roughly 160,000 light years from one side to the other, making it about one and a half times the size of our own Milky Way galaxy. By studying these infrared images of M100, astronomers can map out the structure of the stars and dust, and study the ways in which galaxies like our Milky Way were formed. M100 is well-known to astronomers because of the five stars that have become supernovae within the galaxy between 1901 and 2006. These exploding stars are extremely useful for helping astronomers to calibrate distance scales in the universe, and to estimate the age of the universe since its creation in the Big Bang. The green regions reveal dust clouds that light up under the illumination of the surrounding stars. The longer infrared wavelengths, which trace the thermal glow of the hottest dust, are overlaid in red. This gives the areas of strongest star formation a reddish/white glow; this is particularly strong in the central ring. The stars themselves shine most brightly at the shorter infrared wavelengths, showing up here in blue. The blue dots covering the entire image are stars that lie between us and M100. Infrared light with wavelengths of 3.6 and 4.5 microns is shown as blue/cyan, showing primarily the glow from starlight. 8 micron light is rendered in green, and 24 micron emission is red, tracing the cooler and warmer components of dust, respectively.
The galaxy Messier 100, or M100, shows its swirling spiral in this infrared image from NASAs Spitzer Space Telescope. The arcing spiral arms of dust and gas that harbor starforming regions glow vividly when seen in the infrared. is a classic example of a grand design spiral galaxy, with prominent and well-defined spiral arms winding from the hot center, out to the cooler edges of the galaxy. It is located about 55 million light years away from Earth, in the little-known constellation of Coma Berenices, near to the more recognizable Leo. In the center, we can see a prominent ring of hot, bright dust surrounding the inner galactic core. Moving further out, the spiral arms peter out towards the edges of the galaxy, where thick webs of dust dominate. Beyond the edges of the dust clouds, a faint blue glow of stars extends to the edge of the galaxys disk. Two small companion galaxies, known as NGC 4323 and NGC 4328, appear as fuzzy blue blobs on the upper side of M100. These so-called lenticular galaxies are virtually clear of any dust, so they lack any of the red/green glow seen in their bigger neighbor. The shape of M100 is probably being perturbed by the gravity of these galaxies. M100 was discovered in 1781, and is now known to stretch roughly 160,000 light years from one side to the other, making it about one and a half times the size of our own Milky Way galaxy. By studying these infrared images of M100, astronomers can map out the structure of the stars and dust, and study the ways in which galaxies like our Milky Way were formed. M100 is well-known to astronomers because of the five stars that have become supernovae within the galaxy between 1901 and 2006. These exploding stars are extremely useful for helping astronomers to calibrate distance scales in the universe, and to estimate the age of the universe since its creation in the Big Bang. The red regions reveal dust clouds that light up under the illumination of the surrounding stars. The stars themselves shine most brightly at the shorter infrared wavelengths, showing up here in blue. The blue dots covering the entire image are stars that lie between us and M100. Infrared light with wavelengths of 3.6 and 4.5 microns are displayed in blue and green showing primarily the glow from starlight. 8 micron light is rendered in red; the small contribution from starlight at 8 microns was subtracted out from the data to better show the dust structures near the galaxys center.
This image of the Pinwheel Galaxy, or M101, combines data in the infrared, visible, ultraviolet and x-rays from four of NASAs space telescopes. This multi-spectral view shows that both young and old stars are evenly distributed along M101s tightly-wound spiral arms. Such composite images allow astronomers to see how features in one part of the spectrum match up with those seen in other parts. It is like seeing with a regular camera, an ultraviolet camera, night-vision goggles and X-Ray vision, all at once! The Pinwheel Galaxy is in the constellation of Ursa Major (also known as the Big Dipper). It is about 70% larger than our own Milky Way Galaxy, with a diameter of about 170,000 light years, and sits at a distance of 21 million light years from Earth. This means that the light were seeing in this image left the Pinwheel Galaxy about 21 million years ago - many millions of years before humans ever walked the Earth. The red colors in the image show infrared light, as seen by the Spitzer Space Telescope. These areas show the heat emitted by dusty lanes in the galaxy, where stars are forming. The yellow component is visible light, observed by the Hubble Space Telescope. Most of this light comes from stars, and they trace the same spiral structure as the dust lanes seen in the infrared. The blue areas are ultraviolet light, given out by hot, young stars that formed about 1 million years ago. The Galaxy Evolution Explorer (GALEX) captured this component of the image. Finally, the hottest areas are shown in purple, where the Chandra X-ray observatory observed the X-ray emission from exploded stars, million-degree gas, and material colliding around black holes.
New observations from NASA's Spitzer Space Telescope reveal the Sombrero galaxy is not simply a regular flat disk galaxy of stars as previously believed, but a more round elliptical galaxy with a flat disk tucked inside. Spitzer's infrared vision allowed astronomers to sample the entire population of the galaxy's stars, as seen in this view in which starlight appears blue-green. The elliptical galaxy is so large that is spills beyond the edges of Spitzer's view. Within the elliptical is a flat disk galaxy. The disk itself shows hints of an inner, bright disk separated by a slight gap from an outer ring. The disk galaxy falls well within the bounds of the outer elliptical. In previous images taken by visible telescopes, the galaxy's flat disk is the most prominent feature. The overall appearance resembles a wide-brimmed hat, or sombrero, hence the galaxy's name. Visible-light views missed the elliptical, or more round, nature of the galaxy, because the old stars dominating the elliptical structure are very dim when viewed at visible-light wavelengths. These same stars stood out when viewed in infrared light by Spitzer, allowing astronomers to re-classify the galaxy as an elliptical with a disk inside. Infrared light of 3.5 and 4.6 microns is color-coded blue-green in this view.
'The infrared vision of NASA's Spitzer Space Telescope has revealed that the Sombrero galaxy -- named after its appearance in visible light to a wide-brimmed hat -- is in fact two galaxies in one. It is a large elliptical galaxy (blue-green) with a thin disk galaxy (partly seen in red) embedded within. Previous visible-light images led astronomers to believe the Sombrero was simply a regular flat disk galaxy. Spitzer's infrared view highlights the stars and dust. The starlight detected at 3.5 and 4.6 microns is represented in blue-green while the dust detected at 8.0 microns appears red. This image allowed astronomers to sample the full population of stars in the galaxy, in addition to its structure. The flat disk within the galaxy is made up of two portions. The inner disk is composed almost entirely of stars, with no dust. Beyond this is a slight gap, then an outer ring of intermingled dust and stars, seen here in red.
If astronomy had its own Academy Awards, then this part of the Milky Way would have been the Favorite Nebula pick for 2011. Competing against 12,263 other slices of the sky, this got more votes from the 35,000 volunteers searching for cosmic bubbles than any other location. The volunteers are all citizen scientists working on the Milky Way Project, scanning a vast collection of infrared images from NASAs Spitzer Space Telescope. Their goal is to identify bubbles that have been blown into gas and dust by stars forming in our Milky Way galaxy. The volunteers study image after image, drawing circles around possible bubbles. Together their efforts have produced a catalog of more than 5,000 bubbles, 10 times what was known before. While scrutinizing each of the images, the volunteers can to bookmark favorite areas. The bright yellow-red nebula at the center of this image garnered the most votes.Interestingly this nebula, which is in the constellation of Scutum, has no common name since it is hidden behind dust clouds. It takes an infrared telescope like Spitzer, which sees beyond the visible spectrum of light, to see through this dark veil and reveal this spectacular hidden nebula. We are seeing stars in the process of forming within this audience-favorite nebula, as well in the surrounding areas in this image.
A huge team of volunteers from the general public has poured over observations from NASA's Spitzer Space Telescope and discovered more than 5,000 "bubbles" in the disk of our Milky Way galaxy. Young, hot stars blow these shells out into surrounding gas and dust, highlighting areas of brand new star formation. Upwards of 35,000 "citizen scientists" sifted through the Spitzer infrared data as part of the online Milky Way Project to find these telltale bubbles. The users have turned up 10 times as many bubbles as previous surveys so far. Volunteers for the project are shown a small section of Spitzers huge infrared Milky Way image (left) that they then scan for cosmic bubbles. Using a sophisticated drawing tool, the volunteers trace the shape and thickness of the bubbles. All of the user drawings can be overlaid on top of one another to form a so-called heat map (middle). Features that have been identified repeatedly by many different users jump out, revealing the overall pattern of bubbles in this part of the galaxy. At least five volunteers must flag a candidate bubble before it is included in the final catalog (right). The brightness of each bubble in the catalog is determined by its hit rate, or the fraction of users who traced it out. The faintest ones were identified by 10% of the users, while solid white indicates a hit rate of 50% or better. After identifying all apparent bubbles, which can include wispy arcs of partially broken rings and the circles-within-circles of overlapping bubbles, volunteers get another of the 12,263 possible image sections to scrutinize. With so much sky to cover, it is clear why so many volunteers are needed to do this kind of science!
This new image shows the Large Magellanic Cloud galaxy in infrared light as seen by the Herschel Space Observatory, a European Space Agency-led mission with important NASA contributions, and NASA's Spitzer Space Telescope. In the instruments' combined data, this nearby dwarf galaxy looks like a fiery, circular explosion. Rather than fire, however, those ribbons are actually giant ripples of dust spanning tens or hundreds of light-years. Significant fields of star formation are noticeable in the center, just left of center and at right. The brightest center-left region is called 30 Doradus, or the Tarantula Nebula, for its appearance in visible light. The colors in this image indicate temperatures in the dust that permeates the Cloud. Colder regions show where star formation is at its earliest stages or is shut off, while warm expanses point to new stars heating surrounding dust. The coolest areas and objects appear in red, corresponding to infrared light taken up by Herschel's Spectral and Photometric Imaging Receiver at 250 microns, or millionths of a meter. Herschel's Photodetector Array Camera and Spectrometer fills out the mid-temperature bands, shown here in green, at 100 and 160 microns. The warmest spots appear in blue, courtesy of 24- and 70-micron data from Spitzer.
This new image shows the Small Magellanic Cloud galaxy in infrared light from the Herschel Space Observatory a European Space Agency-led mission with important NASA contributions, and NASA's Spitzer Space Telescope. The Large and Small Magellanic Clouds are the two biggest satellite galaxies of our home galaxy, the Milky Way, though they are still considered dwarf galaxies compared to the big spiral of the Milky Way. In combined data from Herschel and Spitzer, the irregular distribution of dust in the Small Magellanic Cloud becomes clear. A stream of dust extends to the left in this image, known as the galaxy's "wing," and a bar of star formation appears on the right. The colors in this image indicate temperatures in the dust that permeates the Cloud. Colder regions show where star formation is at its earliest stages or is shut off, while warm expanses point to new stars heating surrounding dust. The coolest areas and objects appear in red, corresponding to infrared light taken up by Herschel's Spectral and Photometric Imaging Receiver at 250 microns, or millionths of a meter. Herschel's Photodetector Array Camera and Spectrometer fills out the mid-temperature bands, shown here in green, at 100 and 160 microns. The warmest spots appear in blue, courtesy of 24- and 70-micron data from Spitzer.
This image shows one of the most distant galaxies known, called GN-108036, dating back to 750 million years after the Big Bang that created our universe. The galaxy's light took 12.9 billion years to reach us. The galaxy is the red object at the center of the frame. The galaxy was discovered and confirmed using the Subaru telescope and the W.M. Keck Observatory, respectively, both located atop Mauna Kea in Hawaii. After the galaxy was discovered, astronomers looked at infrared observations of it taken by NASA's Spitzer and Hubble space telescopes, and were surprised by how bright the galaxy appeared. This brightness resulted from an extreme burst of star formation -- a rare event for such an early cosmic era. In fact, GN-108036 is the most luminous galaxy found to date at these great distances. Astronomers refer to a galaxy's distance by its "redshift," a number that refers to how much the light has been stretched to longer, redder wavelengths by the expansion of the universe. Galaxies with higher redshifts are more distant, and are seen farther back in time. GN-108036 has a redshift of 7.2, making it one of only a handful of galaxies detected this far away and this early in cosmic history. In this Spitzer image, infrared light captured by its Infrared Array Camera at wavelengths of 3.6 and 4.5 microns is colored green and red, respectively. GN-108036 is only detected in the infrared, and is completely invisible in the optical Hubble images.
This image shows one of the most distant galaxies known, called GN-108036, dating back to 750 million years after the Big Bang that created our universe. The galaxy's light took 12.9 billion years to reach us. The galaxy was discovered and confirmed using the Subaru telescope and the W.M. Keck Observatory, respectively, both located atop Mauna Kea in Hawaii. After the galaxy was discovered, astronomers looked at infrared observations of it taken by NASA's Spitzer and Hubble space telescopes, and were surprised by how bright the galaxy appeared. This brightness resulted from an extreme burst of star formation -- a rare event for such an early cosmic era. In fact, GN-108036 is the most luminous galaxy found to date at these great distances. Astronomers refer to a galaxy's distance by its "redshift," a number that refers to how much the light has been stretched to longer, redder wavelengths by the expansion of the universe. Galaxies with higher redshifts are more distant, and are seen farther back in time. GN-108036 has a redshift of 7.2, making it one of only a handful of galaxies detected this far away and this early in cosmic history. The main Hubble image shows a field of galaxies, known as the Great Observatories Origins Deep Survey, or GOODS. A close-up of the Hubble image, and a Spitzer image, are called out at right. In the Spitzer image, infrared light captured by its Infrared Array Camera at wavelengths of 3.6 and 4.5 microns is colored green and red, respectively. In the Hubble image, visible light taken by its Advanced Camera for Surveys instrument at 0.6 and 0.9 microns is blue and green, respectively, while infrared light captured by Hubble's new Wide Field Camera 3 at 1.6 microns is red. GN-108036 is only detected in the infrared, and is completely invisible in the optical Hubble images, explaining its very red color in this picture.
This spectacular spiral galaxy is known to astronomers as Messier 83. Colloquially, it is also called the Southern Pinwheel due to its similarity to the more northerly Pinwheel galaxy Messier 101. NASAs Spitzer Space Telescope shows us, in spectacular detail, the infrared structure of what many think of as our own Milky Way galaxys smaller cousin. Living in the middle of the Milky Ways disk, we see our galaxy only from an obstructed vantage point that is both inside-out and edge-on. We see Messier 83 nearly face-on, giving us a chance to really map out its disk in great detail. This information helps astronomers figure out what our own galaxy would look like if we could warp out to a better vantage point. Like the Milky Way, Messier 83 is classified as a barred spiral galaxy due to the bar-like pattern of stars that run through its center. This bar region is more interesting in the infrared since we can also see the open s shaped curve of dust (green) cutting through the more linear stellar bar (blue). This arc of inner dust connects up with the more tightly wound spiral arms in the outer disk, seen here as bright green-red ridges. Some of the hottest regions of star formation show up as reddish-white dots along the spiral arms, with the most vigorous star formation happening in the galaxys center. Between the main spiral arms we also see a complex webbing of dust that permeates the entire disk. While Messier 83 is about 15 million light years away, it is actually one of the closest barred spiral galaxies in the sky. This gives astronomers an excellent chance to study a galaxy that, although half as big, seems very similar in structure to our own Milky Way galaxy. Infrared light with wavelengths of 3.6 and 4.5 microns is shown as blue/cyan, showing primarily the glow from starlight. 8 micron light is rendered in green, and 24 micron emission is red, tracing the cooler and warmer components of dust, respectively.
This spectacular spiral galaxy is known to astronomers as Messier 83. Colloquially, it is also called the Southern Pinwheel due to its similarity to the more northerly Pinwheel galaxy Messier 101. NASAs Spitzer Space Telescope shows us, in spectacular detail, the infrared structure of what many think of as our own Milky Way galaxys smaller cousin. Living in the middle of the Milky Ways disk, we see our galaxy only from an obstructed vantage point that is both inside-out and edge-on. We see Messier 83 nearly face-on, giving us a chance to really map out its disk in great detail. This information helps astronomers figure out what our own galaxy would look like if we could warp out to a better vantage point. Like the Milky Way, Messier 83 is classified as a barred spiral galaxy due to the bar-like pattern of stars that run through its center. This bar region is more interesting in the infrared since we can also see the open s shaped curve of dust (red) cutting through the more linear stellar bar (blue-cyan). This arc of inner dust connects up with the more tightly wound spiral arms in the outer disk, seen here as bright green-red ridges. Between the main spiral arms we also see a complex webbing of dust that permeates the entire disk. While Messier 83 is about 15 million light years away, it is actually one of the closest barred spiral galaxies in the sky. This gives astronomers an excellent chance to study a galaxy that, although half as big, seems very similar in structure to our own Milky Way galaxy. Infrared light with wavelengths of 3.6 and 4.5 microns are displayed in blue and green showing primarily the glow from starlight. 8 micron light is rendered in red; the contribution from starlight at 8 microns was subtracted out from the data to better show the dust structures near the galaxys center.
Looking like a spiders web swirled into a spiral, the galaxy IC 342 presents its delicate pattern of dust in this image from NASAs Spitzer Space Telescope. Seen in infrared light, the faint starlight gives way to the glowing bright patterns of dust found throughout the galaxys disk. At a distance of about 10 million light-years, IC 342 is relatively close by galaxy standards, however our vantage point places it directly behind the disk of our own Milky Way. The intervening dust makes it difficult to see in visible light, but infrared light penetrates this veil easily. It belongs to the same group as its even more obscured galaxy neighbor, Maffei 2. IC 342 is nearly face-on to our view giving a clear, top-down view of the structure of its disk. It has a low surface brightness compared to other spirals, indicating a lower density of stars (seen here in blue). Its dust structures show up much more vividly (yellow-green). New stars are forming in the disk at a healthy clip. Glowing like gems trapped in the web, regions of heavy star formation appear as yellow-red dots due to the glow of warm dust. The very center glows especially brightly in the infrared, highlighting an enormous burst of star formation occurring in this tiny region. To either side of the center, a small bar of dust and gas is helping to fuel this central star formation. Data from Spitzers infrared array camera (IRAC) are shown in blue (3.6 microns), green (4.5 microns) and red (5.8 and 8.0 microns).
Looking like a spiders web swirled into a spiral, the galaxy IC 342 presents its delicate pattern of dust in this image from NASAs Spitzer Space Telescope. Seen in infrared light, the faint starlight gives way to the glowing bright patterns of dust found throughout the galaxys disk. At a distance of about 10 million light-years, IC 342 is relatively close by galaxy standards, however our vantage point places it directly behind the disk of our own Milky Way. The intervening dust makes it difficult to see in visible light, but infrared light penetrates this veil easily. It belongs to the same group as its even more obscured galaxy neighbor, Maffei 2. IC 342 is nearly face-on to our view giving a clear, top-down view of the structure of its disk. It has a low surface brightness compared to other spirals, indicating a lower density of stars (seen here in blue). Its dust structures show up much more vividly (yellow-green). New stars are forming in the disk at a healthy clip. Glowing like gems trapped in the web, regions of heavy star formation appear as yellow-red dots due to the glow of warm dust. The very center glows especially brightly in the infrared, highlighting an enormous burst of star formation occurring in this tiny region. To either side of the center, a small bar of dust and gas is helping to fuel this central star formation. Data from Spitzers infrared array camera (IRAC) are shown in blue (3.6 and 4.5 microns) and green (5.8 and 8.0 microns) while the multiband imaging photometer (MIPS) observation is red (24 microns).
This split view shows how a normal spiral galaxy around our local universe (left) might have looked back in the distant universe, when astronomers think galaxies would have been filled with larger populations of hot, bright stars (right). NASA's Spitzer Space Telescope discovered that distant populations of galaxies formed massive, bright stars more commonly than today's "diet-conscious" galaxies. Such early galaxies would have been brighter, bluer and more irregular than spiral galaxies today due to the large proportion of massive stars. The Spitzer observations also demonstrate that these distant galaxies fed off steady streams of gas, rather than bursts of gas stirred up from collisions with other galaxies. This artist's rendering is derived from the Hubble image of NGC 1309.
Displaying images 61 - 90 of 311 in total