The Spitzer Space Telescope website will be down on Tuesday July 29th from 9am PDT to 10am PDT for server maintenance. Thank you for your patience.

Download Video

Video Information

Subscribe to Series

05.08.12

Super Earth Reveals Itself to Spitzer

NASA's Spitzer Space Telescope has, for the first time, captured the light emanating from a distant super Earth, a planet more massive than Earth but lighter than Neptune. Super Earths can be either rocky or gaseous. In this case, theorists propose that the planet, called 55 Cancri e, has a rocky core surrounded by a layer of water in a "supercritical" state, where it is both liquid and gas. Topping it all off is thought to be a blanket of steam. It's as if Neptune were somehow dragged closer to the sun and stripped of its large atmosphere.

This artist's animation depicts 55 Cancri e as it orbits its star. The planet whips around the star closely and quickly: It is 25 times closer to the star than Mercury is to our sun and completes one orbit -- its year -- in a mere 18 hours. 

The view starts off showing the system in visible light then switches to show how Spitzer saw it in infrared light.  In infrared, the planet stands out more relative to its star -- it is brighter when viewed in infrared light and the star is dimmer. This is partly because the planet 's sizzling heat causes it to glow brightly at infrared wavelengths.

The planet is too close to its star to be seen separately on the sky, so Spitzer used a specialized trick to see its light. As the planet slipped behind the star in what is called an occultation, the infrared telescope observed how much the total light from the system dropped. The data are shown on a graph that appears in front of the star system. 

By measuring the amount of total light before, during and after this drop, astronomers can then calculate how much light is coming directly from the planet itself. The information revealed that the planet's sun-facing side is more than a scorching 2,000 kelvins (3,140 degrees Fahrenheit), or hot enough to melt steel. The data also indicated that the planet does not reflect much visible light; in other words, it is very dark. 

The observations are an important milestone in the search for life in the universe. NASA's upcoming James Webb Space Telescope will use a similar technique to probe the atmospheres of even smaller, potentially habitable planets for signs of life.

Browse Videos in Science Animations

2040100 per page

Details or Icons

Page-nav-left-disabled Page 1 of 4 Page-nav-right

Go to page

ssc2014-02v1

03.20.14

Panning Through the Milky Way

ssc2012-11v1

07.18.12

Flying Out to GJ 436 and its Planets

ssc2010-08v1

10.19.10

Weird Warm Spot on Exoplanet

ssc2010-06v1

07.22.10

Mini Soccer Balls in Space

ssc2010-06v2

07.22.10

Buckyballs Jiggle Like Jello

ssc2009-19v1

10.06.09

Saturn Family Tour

ssc2009-16v1

08.10.09

Planetary Demolition Derby

ssc2008-09v2

05.05.08

Dissecting a Light Echo

ssc2008-09v1

05.05.08

Cauldron of Light

ssc2007-19v1

11.29.07

Pulling Back the Curtain of Dust

ssc2007-09v1

05.09.07

Blacker than Black

ssc2007-09v2

05.09.07

Mapping Exotic Worlds

ssc2007-09v3

05.09.07

How to Map a Very Faraway Planet

ssc2007-08v2

04.18.07

Highway to the Danger Zone